Transesterification-based Enzymatic Resolutions of Racemic 3-Hydroxy-4-pentenylurethanes in Organic Solvents

Hiroki Takahata,* Yasuhiro Uchida, and Takefumi Momose*

Faculty of Pharmaceutical Sciences, Toyama Medical & Pharmaceutical University, Sugitani 2630, Toyama 930-01, Japan

Key Words: transesterification; immobilized lipase; 3-hydroxy-4-pentenylurethane; chiron

Abstract: An expedient synthesis of homochiral N-protected (R)- and (S)-3-hydroxy-4-pentenylamines (1 and 2) has been accomplished via the enzymatic resolution of the racemic 1 and 2 mediated by immobilized lipase in pentane.

Recent investigation in this laboratory has revealed that optically active N-protected 3-hydroxy-4pentenylamines (1 and 2) serve as new and powerful chiral building blocks in the construction of hydroxylated alkaloids such as (-)-anisomycin, ^{1a} (-)-detoxinine, ^{1a} (+)-retronecine, ^{1b} (-)-supinidine, ^{1c} and 1hydroxyindolizidines. ^{1d} Hitherto, optically active allylic alcohols 1 and 2 have been resolved by the Katsuki-Sharpless asymmetric epoxidation.² However, this methodology has some drawbacks: 1) The epoxides and the by-product pyrrolidines are concomitantly formed; 2) The completion of reaction requires a prolonged operation (7-14 days); 3) The procedure is inconvenient of work-up owing especially to laborious chromatographic fractionation of products; 4) The cost for large-scale preparation is not so inexpensive; 5) The values (89-92% ee) of enantiomeric excess are somewhat unsatisfactory. These detract from the overall utility of this method. Accordingly, we sought a procedure more efficient for the rapid production for greater quantities of optically pure urethanes 1 and 2. Enzymes are now recognized as substrate-specific and highly enantioselective catalysts for asymmetric synthesis. In particular, lipases have recently been used for biocatalytic resolutions due to the admission of organic solvents as reaction media³ and to the emergence of enol esters for essentially irreversible transfer of carboxylates.⁴ In this letter, we disclose herein that racemic secondary allylic alcohols 1 and 2 can effectively be resolved *via* irreversible lipase-mediated transesterification in organic solvents.

Screening experiments were made with 1 using different lipases [*Pseudomonas* AK (Amano AK), *Pseudomonas* PS (Amano PS), *Candida rugosa* (Amano AY), *Porcine pancreas* (PPL), and *Candida cylindracea* (CCL)] and organic solvents. It was found that Amano AK, Amano PS, and PPL were selective in acylating the *S* isomer⁵ of 1 whereas Amano AY and CCL acylated the *R* enantiomer faster than did its *S* antipode. A combination of Amano AK or Amano AY, vinyl acetate as acylation reagent, and pentane as organic solvent⁶ gave the best results. The transesterfication of 2 was then undertaken. Of several lipases tested, it was found that Amano PS or Amano AY afforded the best result in terms of enantioselectivity as shown in Table 1.⁷ The acetates (S)- or (R)-3 and (S)- or (R)-4 were readily converted with DIBALH into (R)- or (S)-1 and (R)- or (S)-2, respectively, without loss of optical purity in good yields.

Furthermore, in order to improve the enantioselectivity, the use of the lipase in immobilized form⁸ was examined. Fortunately, higher optical purities were performed as shown in Table 2. In addition, a shortening of the reaction period was concurrently achieved.

_он		¢ОН	"ОН	OAc	OAc
NH	Lipase		or	+ , or	
COOR	vinyl acetate		NH	NH	NH `
COOR		COOR	COOR	COOR	COOR
1 R=Bn		(<i>R</i>)- 1	(<i>S</i>)-1	(<i>S</i>)-3 R=Bn	(<i>R</i>)- 3
2 R=tBu		(<i>R</i>)-2	(<i>S</i>)-2	(S)-4 R=tBu	(<i>R</i>)- 4
Table 1. Transe	sterification of 1 and 2	by lipases.			

	condition ^a			alcohol (1.2)			acetate (3.4)			
entry	sub.	lipase	time(h)	yield(%)) ee(%) ^b	config.	yield(%)	cc(%)	config.	Ec
1	1	AK	14	41	93	R	52	72	S	20
2	1	PS	14	45	35	R	52	54	S	. 5
3	1	PPL	89	9 0	6	R	1	6	S	1
4	1	CCL	67	78	16	S	16	78	R	9
5	1	AY	13	44	86	S	45	86	R	37
6	2	AK	18	46	37	R	52	33	S	3
7	2	PS	24	43	94	R	49	89	S	61
8	2	AY	46	58	53	5	29	95	R	66

a) All runs were conducted with 1 mmol of allyl alcohol, 5 eq. vinyl acetate, and 100 mg of lipase in pentane (5 mL) at 30 °C. b) Determined by ¹⁹F NMR analysis of the derived (+)-MTPA ester. c) Chen, C.-S.; Fujimoto, G.; Girdaukas, G.; Sih, C.J. J. Am Chem. Soc. **1982**, 104, 7294.

Table 2. Transesterification of 1 and 2 by the immobilized lipases.

	conditiona		alcohol (1, 2)		acetate (3,4)						
entry	sub.	lipase	time(h)	yield(%)	$ee(\%)^b$	config.	$[\alpha]_D^{25}$	yield(%)	cc(%)	config.	E
1	1	AK	4	43	97	R	-2.98	49	77	S	31
2	1	AY	3	46	9 9	S	+3.05	46	96	R	265
3	2	PS	1.5	46	98	R	-9.87	51	85	S	57
4	2	AY	27	47	89	S	+8.95	48	87	R	43

a) All runs were conducted with 1 mmol of allyl alcohol, 5 eq. vinyl acctate, and 100 mg of lipase supported on Celite (400 mg) in pentane (5 mL) at 30 °C. b) Determined by 19 F NMR analysis of the derived (+)-MTPA ester.

This immobilized lipase-mediated resolution of secondary allylic alcohols 1 and 2 is superior in all respects to the Katsuki-Sharpless method. It was found that the asymmetric recognition for selective acylation depended on the lipase used. Such facile preparation of chirons are of obvious importance for contemporary asymmetric synthesis.⁹ Extensions of this methodology to the resolution of other allylic alcohols are the subjects of active investigations, the results of which will be reported in due course.¹⁰

References and notes

- a) Takahata, H.; Banba, Y.; Tajima, M.; Momose, T. J. Org. Chem. 1991, 56, 240; b) Takahata, H.; Banba, Y.; Momose, T. Tetrahedron: Asymmetry 1991, 2, 445; c) Idem. Tetrahedron 1991, 47, 7635; d) Idem. Tetrahedron: Asymmetry 1990, 1, 763.
- 2. Gao, Y.; Hanson, R.M.; Klunder, J. M.; Ko, S.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
- 3. a) Klibanov, A. M. Acc. Chem. Res. 1990, 23, 114; b) Chen, C.-S.; Sih, C. J. Angew, Chem. Int. Ed. Engl. 1989, 28, 695.
- 4. Degueil-Casting, M.; De Jeso, B.; Drouillard, S.; Mallard, B. Tetrahedron Lett. 1987, 28, 953.
- 5. The similar enatio-discrimination has been observed; Burgess, K.; Jennings, L. D. J. Am. Chem. Soc. 1991, 113, 6129.
- 6. Although several solvents (hexane, cyclohexane, CH₂Cl₂, i-Pr₂O, THF) were examined, pentane provided the best result.
- 7 Absolute configrations of 1 and 2 were determined by comparison with the signs of specific rotations reported.^{1a,b}
- Immobilized forms were prepared by absorption of lipase on Celite 535; Bianchi, D.; Cesti, P.; Battistel, E. J. Org. Chem. 1988, 53, 5531.
- 9. The present procedure is facile and simple in operation and can readily be scaled up,
- 10. Generous gift of lipase Amano AK, PS, and AY from Amano Pharmaceutical Co. is gratefully acknowledged.